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Mechanisms for the generation of edge waves 
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Two mechanisms for the generation of standing edge waves over a sloping beach are 
described using classical linear water-wave theory. The first is an extension of the 
result of Yih (1984) to a class of localized bottom protrusions on a sloping beach in 
the presence of a longshore current. The second is a class of longshore surface- 
pressure distributions over a beach. I n  both cases i t  is shown that Ursell-type 
standing edge-wave modes can be generated in an appropriate frame of reference. 
Typical curves of the mode shapes are presented and it is shown how in certain 
circumstances the dominant mode is not the lowest. 

1. Introduction 
Edge waves are characterized by the fact that they are confined to the shoreline, 

decaying with distance out to sea. They may be stationary or travelling waves. The 
first such edge wave was constructed by Stokes (1846) on the basis of linear theory 
for waves over a uniformly sloping beach. Stokes’ edge wave decays exponentially to 
zero in the seaward direction and the wavelength A( = 2x/k) in the longshore direction 
is related to the wave radian frequency w by 

u2 = gk  sina 
where a is the beach angle. 

direction, we find that the corresponding Stokes stationary edge wave satisfies 
Viewed from a frame of reference moving with velocity U in the longshore 

Eckart (1951), using linear shallow-water theory, constructed an infinite sequence 
of edge-wave modes involving products of exponentials and Laguerre polynomials, 
for which the relation between frequency and longshore wavenumber is 

w2 = gk(2n + 1) a, n an integer. ( 1 . 1 )  

For small beach slopes the first of these agrees with the Stokes edge-wave mode, 
but i t  is clear that these shallow-water-theory solutions cannot be valid a t  large 
distances from the shoreline in the seaward direction. 

Despite the limitations of shallow-water theory it has been used with good effect 
in showing how edge waves can be generated. For example it has been observed that 
hurricanes travelling approximately parallel to a nearby coastline sometimes give 
rise to edge waves. Munk, Snodgrass & Carrier (1956) have shown how a steadily 
moving pressure distribution on the free surface can model such edge waves, and 
obtain good agreement with experimental evidence on both periods and amplitudes 
of the waves. 
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Greenspan (1956) has extended this idea to consider a more precise physical model 
in which the pressure disturbance originates a t  a finite time. I n  both these papers it 
is possible to construct solutions for an arbitrary surface-pressure distribution by 
exploiting the completeness of the Laguerre polynomials, the eigenfunctions 
corresponding to the edge waves. 

A more accurate theory using the full linearized equations, however, shows that 
the shallow-water model is wrong even near to the shoreline where it predicts an 
infinite number of edge-wave modes with frequencies and wavenumbers given by 
(1 .1)  for each beach angle a. Thus Ursell (1952) has shown that by linear theory, the 
correct dispersion relation is 

w2 = gk sin (2n+ 1) a, (2n+ 1) a < fn, (1.2) 

agreeing with Stokes’ solution for n = 0, so that for a given beach angle, there are in 
fact only a finite number of bounded edge-wave modes. The eigenfunctions 
corresponding to the edge waves are sums of exponentials bounded a t  the shoreline, 
decaying out to sea as required. I n  addition to these edge waves there exists a 
continuous spectrum with w 2  > gk which has been considered by Peters (1952) and 
Roseau (1958). The Ursell edge waves have been generalized to include density 
stratification by Greenspan (1970). I n  contrast to the bounded edge waves, the 
continuous eigenfunctions, which might be used to describe the changes experienced 
by an oblique incoming wave from infinity, are extremely complicated for general 
beach angles. Thus a description of the waves produced by say an arbitrary surface- 
pressure distribution, using full linear theory, would require an expansion in terms 
of this mixed spectrum and would present considerable technical difficulties. The 
same would be true for the determination of the stationary edge waves produced in 
the lee of a small arbitrary bottom protrusion due to a uniform longshore current. 

Yih (1984) overcame this difficulty by considering only special bottom protrusions 
in the presence of a uniform longshore current U .  Thus, using the full linearized 
theory he was able to construct a solution for a < in satisfying all the conditions of 
the problem and which gave rise to  the stationary Stokes edge-wave mode in the lee 
of the protrusion, and which decayed to  zero both upstream of the protrusion and out 
to sea. 

In  the present work we show how Yih’s work can be extended in two ways. First, 
by enlarging the class of bottom protrusions we show that a solution can be 
constructed, using the full linearized theory, which gives rise to a sum of stationary 
Ursell-type edge-wave modes downstream of the protrusion, with wavenumber 
related to the longshore current CJ by 

g sin (2n+ 1) CL 

U2 
k =  9 

with n an integer, and (2n + 2) a < fn. Secondly we show that a similar special class 
of moving longshore surface-pressure distributions over a uniform sloping beach also 
gives rise to Ursell-type edge-wave modes. 

In  the next section we construct a set of Ursell-type edge-wave potentials which 
will be used in the subsequent sections. 
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2. Edge-wave potentials 
We choose Cartesian coordinates with y vertically upward, x out to  sea and z aIong 

the undisturbed shoreline. The beach occupies y cos a + x sin a = 0, x > 0 and 
the fluid y cosa+x sin a > 0, y < 0. It is convenient to consider a set of coordinates 
x’, y’, x obtained from the original set by a clockwise rotation through an angle a. 
Then x’ = x cosa-y sina, y’ = y cosa+x sina. 

U,(x,y) =A,, exp[-k(xcosa-y sina)] 

(2.1) 

Consider the functions U,(x, y) defined by 

+A,,,, , exp [ - k{x cos ( 2 n  + 1) a + y sin ( 2 n  + 1 )  a}] 

+ A,,{exp[-Ic{xcos(2~~-1)a-t-ysin(2m-l)a}] 
n 

m=1 + exp [ - k { x  cos (2m+ 1 )  a- y sin (2m + 1 )  a}]} (2.2) 

for n 3 1, and where the sum does not appear for n = 0. 
It is easily verified that 

(2.4) 
Since 

x cos (2mf 1)  aT y sin ( 2 m f  1)  a = x’ cos 2maTy’ sin 2ma 

it is an easy matter to  verify that U,(x, y) satisfies 

aun a’n a u n  - 

aY ax a Y  
7 = sin a-+ cos a __ - - k sin (2n+ 2 )  aA,,,, , exp [ - kx’ cos (2n+ 2 )  a]  

on y‘ = 0, (2 .5)  

whilst 

K + k sin (2m + 1 )  a 
K - k  sin (2m+ 1) a 

provided A,, = - A,,,,,, (m = 0 , 1 , 2 , .  . . ,n).  (2.7)  

We note that Un(x, y)+O in the fluid region provided cos ( 2 n + 2 ) a  > 0 or 

It is readily confirmed that U,(x,y) is identical (apart from notation) with the 

If A,,,, ,  = 0, then we denote U,(x, y) by U,(x,y) and 

(2n+2)a <in. 

solution given by Yih (1984, equation (11) ) .  

ao, 
aY 

. = O  ony‘=O, 

whilst 
ari, 
aY 

KO, -__ = (K- k sin (2n+ 1) a )  A,,  exp [ - kx cos ( 2 n  + 1 )  a ] ,  y = 0, (2.9) 

and then (2.7) holds for m up to n- 1 only. We note that U,(X, y) + O  in the fluid 
region provided cos (2n+ 1)  a > 0 or (2n+ 1 )  a < 8.. 

If we require homogeneous conditions to be satisfied on both y = 0 and y’ = 0, then 
we must choose A,, , , ,  = 0 and K = k sin (2n+ 1 )  a. In  this case the functions 

1 3 - 2  
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u,(x, y) are precisely the Ursell edge-wave modes and it is straightforward to show 
from (2.7) that 

(2.10) 

as in Ursell (1952). 
It is clear that the functions U,(x, y), Un(x, y) provide a basis for the generation of 

edge-wave solutions due to either a surface-pressure distribution described by the 
right-hand side of (2.9) or a bottom disturbance described by the right-hand side of 
( 2 . 5 ) .  We shall show how these functions can be used to solve the two problems 
described in 3 1. 

In subsequent sections we shall need certain properties of these functions Un(x, y), 
D,(x, y). We define 

Then (2.7) may be written 

(2.12) 

which has solution 

where 

Now from (2.2) 

n 
= 2An+,,n(-1)n+1 2 (-l)me-kxc~P,,(k)-. Lrn (2.14) 

m=0 L+L, 

We may write 

where 

n. rn 

k , + k , -  t a n ( r + s + l ) a  
s=m k , - L ,  s=m t an( r -s )a  ' 

s+r s + r  

T,,, = n -- 

(2.15) 

(2.16) 

If A,,,, , = 0 so that U,(x, y) + u,(x, y) it can be shown that with A,,,, , = 1 in 
(2.14) 

(2.18) L O  U0(x, 0) = -22Aloe-~ze0- 
L-Lo  

For n = 0, 

and U,(x, 0) = A,, eckXco. (2.19) 
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3. A longshore uniform current over a small protrusion on the sloping bed 
A uniform current in the z-direction over the beach has potential Uz. We assume 

there exists a small protrusion described by 

y/ = fk’, 2) (3 .1)  

Vz$ = 0 in the fluid, (3 .2)  

which disturbs this uniform flow. Then the perturbed potential $(x, y, z )  satisfies 

The free-surface elevation q(x,  z )  is determined from 

-u- a7 = -. a$ 
az ay 

(3 .4)  

(3 .5)  

We consider special forms for f (x’ ,  z )  given by 

f(x’, z )  = f b(k) e-lczfCk cos kzdk (3 .6)  

for suitable b(k). 
Thus f (x’ ,  z )  is symmetric about z = 0, and decays with increasing x’ or z .  Broadly 

speaking, the value ofck governs the relative rate of decay in the XI and z directions, 
since 

azf (0,O) 
a22 

(3 .7)  

Note that c:, is restricted to positive values so that (2n + 2 )  a <  in. Nonetheless for a 
beach of angle 01 = &T, say, n can take integer values up to 6 ,  and the difference 
between the cases n = 0,  and n = 6 produces a factor of 10 in the relative rates of 
decay of f(x’, z )  in the x’ and z directions. In  particular, if we fix the x’ dependence, 
increasing n has the effect of producing a much sharper ridge in the z-direction. More 
general shapes can also be treated by replacing coskz by sinkz in (3 .6)  and using 
combinations of both solutions. 

We construct a solution to the problem by writing 

$(x, y, z )  = 1; b(k) Un(x, y) sin kzdk. 

Then, using ( 2 . 3 ) ,  (2 .5) ,  (2 .6)  it is easily verified that condition (3 .2)  is satisfied, as is 
(3.3), provided we choose 

(3 .9)  
k2 u2 

g 
K=-,  

and condition (3.4) with f given by (3 .6)  is also satisfied provided 

U - _  
An,,,, - s:, . (3.10) 
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The free-surface elevation follows from (3.5), which, on using (2.6) and (3.9), 
becomes 

kb(k)Un(x,O)coskxdk = kb(k)Un(x,O)eikzdk. (3.11) 

Referring to (2.14) we see that the integrand has poles due to the term Pmn(k) a t  
k = k,  ( r  = 0 , .  . . , n) ,  so that as it stands the integral (3.11) is undefined. 

This is a common feature of such problems and arises from solving a steady-state 
rather than an initial-value problem. There are a number of ways of getting around 
this problem. Yih (1984) chooses k,  to have a positive imaginary part which tends to 
zero finally. The essential aim, however, is t o  ensure that upstream of the disturbance 
there are no waves. To ensure this we rewrite (3.11) in the form 

kb(k) Un(x, 0) eikz dk (3.12) 

where the path passes below the poles a t  k = k,  ( r  = 0,1,  . . . , n). Then for z < 0 the 
integral may be deformed along a line in the fourth quadrant where the negative 
exponential term in z ensures 

Downstream of the protrusion, where z > 0, the dominant behaviour is governed by 
the contribution to the integral from the residues a t  k = k,. Typically, after 
deforming the integral into the first quadrant, where i t  is negligible for large positive 
z ,  we obtain, as z+ + co, 

$(X,X)+O,  Z - t - c o .  

kb(k) eikz-kxe -2xk,b(k,)sin k,ze-krxem 
m d k d k  N (3.13) 

for suitable b ( k ) ,  and so from (2.14), (2.15), after interchanging the orders of 
summation. for z + + co 

(k+km)(k -k r )  kt- + k m  

8x n ( - 1)"km T,,, e-krxem 

F:, r=o m=o kr + k m  
r ( x , z )  ~ - ( - l ) ~  C k,2b(kr)sink,z C (n =k O ) ,  (3.14) 

and (3.10) has been used with T,,, = ( -  1)" and we have defined k;  = gs;/Uz. 
The special case n = 0 has to be treated separately and we obtain 

(3.15) 

4. A longshore-moving pressure distribution over a sloping beach 
We choose coordinates fixed with the pressure distribution so as to make full use 

of the results of the preceding section. If the pressure moves with constant speed U 
in the longshore direction the equations satisfied by the perturbed steady potential 
$(x, y, z )  are (Stoker 1957) 

V2$ = 0 in the fluid, (4.1) 

a$ - = 0, y' = 0. 
aY' 

(4.3) 
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The surface elevation is determined by 

We consider special pressure distribution of the form 

p ( x ,  z )  = lom p ( k )  e-lcXCn cos kz  dk, 

with (2n+ 1)a < in, 

for suitable p ( k ) .  The discussion following (3.6) applies to (4.5) also. 
We construct a solution in the form 

$(x, y, 4 = f P ( k )  EL(., y) sin kzdk 

which satisfies (4.1), (4.3), and also (4.2) provided 

k2U2 K = -  
g 
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(4.4) 

(4.5) 

and A, ,  = {Up(k-kn)}- ' .  (4.7) 

The surface elevation is derived from (4.4) which, after using (2.9), may be 
written 

1 

PS 
T ( X ,  2) = r'(x,  2) - - -p (X ,  4 ,  (4.8) 

where ~ ' ( x , z )  = Re- k p ( k )  On(x,O)eikZdk "E 9 

1 
= Re- f ~ { U n p 1 ( ~ ,  O)+e-kxen}eikzdk (4.9) 

Pg k-kn 
from (2.17) and (4.7). 

facilitated by noting that 
The subsequent calculation of the contribution to the integral for z+ co is 

(4.10) Pm,n-I Pmn 
k -k ,  k+k, '  

-- 

Thus we find, in a similar manner to the previous problem in 93 that 

provided we define Tnnn = 1. 
The case n = 0 is best considered separately whence we find 

For example with p ( k )  = e-ak, we see that the localized pressure 

(4.12) 

(4.13) 
a+c,x 

(a+ co x ) ~  + z2 p ( x ,  2) = 
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produces a train of Stokes standing edge waves of wavelength 27tk;' = 27tU2/g sina 
and of amplitude ratio, defined to be the ratio of the amplitude of the edge wave a t  
the shoreline to p,,,/pg, of 2xkO a e-lcQa. 

5. Possible extensions 
It is possible to generalize the forcing mechanisms by replacing coskz with sinkx 

in (3.6) and (4.5) and by using combinations of both. Again the transient development 
of edge waves can be considered for the same spatial variation (3.6). For example for 
a transient motion of the beach having variation a( t )  with time, the resulting 
elevation is 

y(x, z ,  t )  = - wa(w) ciwt [om b ( k )  U,(x, y) cos kz dk dw, 
9 i r  -a 

(5.1) 

where in the definition of U J x ,  y), K = w 2 / g  and 

Here 

A,,,, ,  = - ( k 8 y .  

For example for n = 0 and with a(w)  = 1, corresponding to an impulsive motion, we 
find 

~ ( x ,  z ,  t )  = -see a b ( k )  e-lczcosa cos kz cos wo t dk, s,: (5.4) 

where w i  = gk sina. 

The integral (5.4) is identical with that obtained in the classical Cauchy-Poisson 
problem in deep water (Lamb 1932, $9238-241) apart from the factor sina in the 
dispersion relation, and can be treated similarly. 

6. Discussion of results 
The main results of this paper are given by (3.14) and (3.15) which give the 

surface elevation of standing edge waves downstream of the special bottom 
protrusion described by (3.6) in the presence of a uniform longshore current U .  
Similarly, (4.12) and (4.13) describe the surface elevation of standing edge waves 
downstream of a special pressure distribution described by (4.5) moving with 
constant speed U in the longshore direction, as viewed from axes moving with the 
pressure distribution. 

Since the form of the solution in each case is so similar we shall concentrate our 
discussions on the case of the longshore current over a bottom protrusion. 

In order to obtain details of the standing edge-wave modes in (3.14) we need to 
specify the particular form of b ( k )  and hence the bottom protrusionf(x', z ) .  However 
some comments can still be made for arbitrary b ( k ) .  

For a given bottom slope a,  there exists a largest integer n satisfying cos (272 + 2) a 
> 0. For example if 01 = &IT, we can choose n = 0 , 1 , .  . . , 6 ,  and any one of these 
permissible values of n may be used in (3.6) as ingredients in constructing our 
bottom protrusion together with b ( k ) .  It follows that no edge-wave modes can be 
constructed by this method if cos2a < 0 or a > i7t. 

The solution (3.14) shows us that for a given choice of n the wave elevation 
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downstream of the bottom protrusion is given by a sum of n + 1 standing edge-wave 
modes of wavelengths 

r).RTT2 
A1L.W 

A, 271.k~~ = (r  = 0,1 , .  . . , n),  
g s i n ( 2 r + l ) a  

in the longshore direction. 
Each edge-wave mode with wavenumber k,  decays with distance out to sea, the x- 

dependence being a well-defined but complicated sum of exponentials of the form 
exp ( - k,  cm x) for m = 0,1,  . . . , r .  The lowest edge-wave mode corresponding to 
r = 0 (and the only one if n = 0) is just the Stokes standing edge-wave mode, decaying 
monotonically to zero as x --f CO. 

It is of interest to compare the amplitude of the lowest edge-wave mode ( r  = 0) in 
the case of general n to that in the n = 0 case. To do this we pick out the coefficient 
of sin k o z  in (3.14) in the two cases of general n and n = 0 and find their ratio. This 
turns out to be 

( c o s ( n + l ) a  cosa 1 ’ 
has been used. For a = &c, n = 6 the expression (6.2) is about 1.9. However, it is not 
clear that  the lowest mode is the most dominant anyway for general n since the 
actual amplitude depends upon b(k , )  and hence upon the particular bottom 
geometry. 

We shall restrict attention to the bottom protrusion derived from choosing 

b ( k )  = A k P  e-lca, A , p ,  a > 0, (6.4) 

namely, 
A p  ! 

f (x ’ , z )  = {(a+X’C;)2+z2}P+1 Re (a+x’c~-iz)p+l.  

Then, from (3.14), far downstream of the protrusion the elevation of the standing 
edge-wave modes is n 

(6.6) 
871. 

~ ( x ,  z )  - - ( -  l)n B,(x) sin k,  z ,  
k:, r=o 

where B,(x) = k;+z e-lc,a (-l)msmT mnr e-krcmx. (6.7) 
m=o sr + sm 

It is convenient to introduce an amplitude ratio A, being defined as the ratio of the 
amplitude at  the shoreline of the lowest edge-wave mode ( r  = 0) to the maximum 
height of the protrusion above the (x’,z)-plane a t  the shoreline, which is just 

Then 
27c ( k ,  a)P+l e-lcoa cos a 

A ,  = - 
p !  cos2(n+l)a ’ 

which reduces to the result obtained by Yih (1984, equations (29) and (33)) for the 
case n = 0, p = 0. 

The effect of varying a is to  vary both the peak of the protrusion a t  the shoreline 
and its extent in the longshore direction. As a increases, for fixed a, A ,  reaches a 
maximum a t  k, a = ( p  + 1)-l before tending to zero as a --f co . Thus, as confirmed by 
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-0.5‘0 

-0.5‘0 

FIQURE 1. (a) Bottom protrusion k ’ f ( z ’ , z )  = (l+c,,z)/{(i + c , , ~ ’ ) ~ + z ~ } ,  c,, = cosn/30. (b) Bottom 
protrusion A-’f(z’,z) = (1 +c6z’)/{(1 + C , X ’ ) ~ + Z ~ ) ,  c6 = cos 13n/30. 

Yih for the n = 0 case, as the protrusion becomes less peaked and broader in extent 
in the longshore direction the amplitude of the longest edge-wave mode ultimately 
diminishes. 

In order to illustrate more clearly our results and to assess the relative importance 
of each of the n + 1 edge-wave modes we present some representative curves derived 
from (6.5) and (6.7). In what follows we shall restrict our computations to the case 
a = 1 and a bottom slope of a = &c. We shall also choose ga/U2 = 10. 

In  figure 1 (a,  b )  we sketch A-lf(x’, z )  for p = 0 and n = 0,6. It can be seen that 
the effect of increasing n is to extend the influence of the protrusion seawards. 
Figure 2 (a ,  6) is as figure 1 but with p = 2 ,  and we see that the protrusion now 
has a zero in the longshore directions. Again the effect of increasing n is to extend the 
protrusion seawards. 

Figure 3 shows the variation of B,(x) with x as computed from (6.7) for the case 
of p = 0 and n = 6 as in figure 1 (b ) .  Only the first three edge-wave modes are 
sketched since the rest are negligible in amplitude. The lowest mode is clearly 
dominant with the subsequent modes rapidly diminishing as r increases. 
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-0.5 ‘0  
FIQURE 2. (a) Bottom protrusion A-’f(z’,z) = ( 1  +coz’ ){ ( l+c ,z ’ )2-3z2} /{ (1+~oz’)2+~2}3 ,  co = 
cos7c/30. ( b )  Bottom protrusion A-tf(z’,z) = (1 +c6z’){(1 + C ~ ~ ’ ) ~ - ~ Z ~ } / { ( I  + C , ~ ’ ) ~ + Z ~ } ~ ,  c6 = 
cos 137c/30. 

301 

15- 

10- 

5 -  
( x  10-1) 

0- , 
30 35 40 45 50 

x( x 10-1) 
- 5 -  

-lei - 15 

- 20 1 
FIGURE 3. Amplitude of edge-wave modes B, for bottom protrusion of figure 1 ( b ) ,  

from (6.6), (6.7). 
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I 

FIGURE 4. Amplitude of edge-wave modes B, for bottom protrusion of figure 2 ( b ) ,  
from (6.6), (6.7). 

In contrast figure 4 shows the variation of B,(x) with x for the case p = 2 and 
n = 6 as in figure 2 ( b ) .  Here both B,(x) and B,(x) exceed B,(x) in magnitude a t  
x = 0,  taking values -4.64 and 2.11 there respectively. In  fact B,(x) dominates 
B,(x) for a wide range of values of x. 

7. Conclusion 
It has been shown how Ursell-type standing edge waves of wavelength 

2nU2/g sin (2r + 1) a can be created by a uniform longshore current U passing over a 
localized protrusion on an otherwise uniform sloping beach of slope a. The protrusion 
can be of fairly general form but the rate a t  which the amplitude of the protrusion 
decays in the seaward compared to the longshore direction is dictated by the choice 
of an integer n satisfying 2(n+ 1) a < an. Then the number of edge-wave modes 
created is n+ 1. A more restricted bottom profile, obtained by choosing n = 0 was 
considered by Yih (1984) who showed how a single Stokes standing edge-wave could 
be produced. 

Of particular interest was the fact that for a particular shaped protrusion the 
second edge-wave mode could dominate the first in amplitude, both a t  the shoreline 
and a t  certain distances offshore. There appears to be no reason why higher edge- 
wave modes should not dominate lower modes for other bottom shapes also. The 
author is grateful to a referee for pointing out that this possibility is confirmed by the 
observations of Holman & Bowen (1984) of standing edge waves of mode number in 
the range 3-7 on a sloping beach, although it is not suggested that the mechanisms 
in the two cases are the same. 

It has also been shown how a localized moving longshore surface-pressure 
distribution over a uniform sloping beach can also give rise to Ursell-type standing 
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edge waves. The analysis is similar to the longshore-current case and no detailed 
results are presented. Again the general form of the pressure distribution involves an 
integer n which must satisfy (2n  + 1)  CL < in. Aside from the technical requirements 
of convergence of the solution it is not clear whether there is any physical significance 
in the different restrictions on n in the two cases. The transient development of edge 
waves is also briefly considered using the same spatial variation (3.6). 

The major shortcoming of the present work is the restriction of the forcing 
mechanism to forms such as (3.6) and (4.5) although certain flexibility is available 
through the choice of b ( k ) .  The determination of the edge waves created by a 
longshore current over an arbitrary bottom protrusion on a sloping beach, or by an 
arbitrary localized longshore surface-pressure distribution, by linear theory, remains 
an elusive goal. 

This work was completed during the author’s visit to the Institut de Mdcanique de 
Grenoble in July 1986. 
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